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Outline

* Background on the seasonal bias
* Investigating bias in SeaWiFS, MODIS Aqua, Terra, and SNPP

e SeaBASS validation at MOBY

* Conclusion



Elements with potential impact on seasonal
bias

* Instrument calibration (cross-calibration, polarization correction, RVS,
trends, etc.)

 MOBY timeseries data (calibration issues, BRDF correction, vertical
depth Lu extrapolation, surface effects).

* Vicarious calibration procedure (i.e., absolute calibration at NIR, data
filtering, spatial variability).

* Atmospheric correction (BRDF correction, glint, aerosol type).

e Uncertainties in both in-situ as well as satellite retrievals.



Background

* Much of this work stemmed
from a comparative analysis
by K. Bisson between the
backscattering coefficient
derived from MODIS Aqua,
CALIOP and Argo floats.

It was discovered that there
is a seasonal and latitudinal
discrepancy between MODIS
and CALIOP and Argo floats.

This work summarized in the
GRL paper.
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Key Points:

« Spatiotemporal correlation scales are
quantified between global lidar and
in situ observations

« Satellite lidar has lower error
and blas compared to ocean
color observations of particulate
backscattering

« Phytoplankton carbon values
determined from global lidar and
ocean color differ within basins by as
much as 50%
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Abstract How well do we know the particulate backscattering coefficient (bb,,) in the global ocean?
Satellite lidar by, has never been validated globally and few studies have compared lidar by, to by, derived
from reflectances (via ocean color) or in situ observations. Here, we validate lidar by, with autonomous
biogeochemical Argo floats using a decorrelation analysis to identify relevant spatiotemporal matchup
scales inspired by geographical variability in the Rossby radius of deformation. We compare lidar, float,
and ocean color by at the same locations and times to assess performance. Lidar by, outperforms ocean
color, with a median percent error of 18% compared to 24% in the best case and a relative bias of —11%
compared to —21%, respectively. Phytoplankton carbon calculated from ocean color and lidar exhibits
basin-scale differences that can reach +50%.

Plain Language Summary Backscattering of light by particles is an important input for
many studies concerning ecology and the carbon cycle. There are two main types of satellite sensors that
measure backscattering but they have not been validated worldwide. In order to use backscattering for
global questions, we need to understand how well both satellite approaches perform. Passive ocean color
sensors act like wide-view cameras capturing sunlight scattered by ocean constituents, whereas active
sensors use a laser system that illuminates the ocean and measures the return pulses of light within

a narrow spatial range. In this study, we compare backscatter data from both satellite sensor types to
matchup backscattering data collected in situ by a global network of floats. We find that backscatter data
from the active and passive satellite sensors disagree, particularly at low backscattering values. Overall,
the active sensor performs best when compared to field data. We applied the lidar data to reassess global
phytoplankton carbon and find regional differences from conventional estimates that can reach +50%.

1. Introduction

The spectral particulate backscattering coefficient (byy; m™; with spectral dependence hereafter implied

unless noted) is central to applications of ocean optics for marine ecology and biogeochemistry. Satellite-de-
rived byy has been used to assess particulate organic carbon (Loisel et al., 2001; Stramski et al., 1999), phy-
toplankton carbon (PhytoC, Behrenfeld et al., 2005; Graff et al., 2015), particle sizes (Brewin et al., 2012;
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Bias in the
remote sensing
reflectance (Rrs

Analysis at MOBY
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Multiple linear regression
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Study summary

Seasonal bias in global ocean color observations
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In terms of IOPs, bbp is the

most affected as it’s directly

In this study, we identify a seasonal bias in the ocean color satellite-derived remote sensing reflectances

(R5(X); sr~!) at the ocean color validation site, Marine Optical BuoY. The seasonal bias in R (1) is present to
varying degrees in all ocean color satellites examined, including the Visible Infrared Imaging Radiometer Suite,

re I ate d to th e ma g N |t u d e Of Sea-Viewing Wide Field-of-View Sensor, and Moderate Resolution Imaging Spectrometer. The relative bias in Ry
. has spectral dependence. Products derived from R (1) are affected by the bias to varying degrees, with particulate
R rS’ Wh | Ie d p h an d d dg are n Ot . backscattering varying up to 50% over a year, chlorophyll varying up to 25% over a year, and absorption from

phytoplankton or dissolved material varying by up to 15%. The propagation of R(1) bias into derived prod-

. . . ucts is broadly confirmed on regional and global scales using Argo floats and data from the cloud-aerosol lidar with

T h e b 1as 1IN R I's IS more orthogonal polarization instrument aboard the cloud-aerosol lidar and infrared pathfinder satellite. The artifactual

seasonality in ocean color is prominent in areas of low biomass (i.e., subtropical gyres) and is not easily discerned

p ronounce d towa rd S | on ge r in areas orfyhigh biomass. Wlf)ile we have eliminated several candidates that lZOulngause the biases in R{,( 1), there

wave | en gt h S are still outstanding questions regarding potential contributions from atmospheric corrections. Specifically, we

* provide evidence that the aquatic bidirectional reflectance distribution function may in part cause the observed

seasonal bias, but this does not preclude an additional effect of the aerosol estimation. Our investigation high-

lights the contributions that atmospheric correction schemes can make in introducing biases in R (1), and we

recommend more simulations to discern these influence R (1) biases. Community efforts are needed to find the

root cause of the seasonal bias because all past, present, and future data are, or will be, affected until a solution is
implemented. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Aareement
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A further assessment of calibration

* All sensors use the same algorithms for data processing but exhibit different
seasonal biases.

* The primary differences between sensors are related to their cross-calibration
and polarization correction.

* Cross-calibration aims to improve the Response versus scan calibration and
estimate the polarization sensitivity.

Cross-calibration is performed differently for each sensor:
e SeaWiFS - no cross-calibration
 MODIS Aqua - cross-calibrated to itself
 MODIS Terra - cross-calibrated to Aqua
* VIIRS - no cross-calibration

The polarization correction for Terra is derived from Aqua, but Aqua utilizes pre-
launch polarization characterization.

* We are investigating cross-calibration of Aqua to SeaWiFS to derive new
polarization elements m12 and m13.



Polarization sensitivity impact on ocean color

* The measured at-sensor radiance [,,, is the summation of unpolarized radiance* I; and the
polarized radiance Q; and U; modulated by the Mueller elements of the instrument.

Iy = I+ my,Q + my3U;

If the the TOA radiance is unpolarized (i.e., Q; and U; are zeros) or if the instrument has no
sensitivity to the polarization (i.e., m;, and m43 are zeros), then [, = I;.

TOA radiance is highly polarized and with a polarization sensitive instrument, I,,, # I;

The polarization sensitivity is defined as follows:
P = \/m%Z + m%S

To perform correction, we need knowledge of:  P. = 1./1..
* The polarized at-sensor radiance Q, and U, (if not measured then approximated from Rayleigh scattering)

* Mmq, andm re-launch characterization of sensorss
12 13

1 Polarized radiance unknown 1

T % e Uy > |fe=
12 Ly, 13 /L,| Approximate the polarized
radiance from Rayleigh model

*I, is the radiance that would be measured by a sensor with no polarization sensitivity More details in Meister et al., 2005
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Cross-calibration of Aqua to SeaWiFS
M11, m12, and m13
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Cross-calibration of Aqua to SeaWiFS, M11
Aqgua xcal to Aqua
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Conclusion

* OBPG is actively working on a resolution, as additional insight is needed.

 The multispectral treatment of MOBY data introduces a constant bias in
the validation process compared to SVC, which considers the full RSR of the
satellite. Therefore, the validation process is being re-evaluated.

* This constant bias exacerbates the impact of the seasonal bias magnitude.

e Aqua shows significantly larger biases than SeaWiFS, Terra, and SNPP,
suggesting an instrument-dependent issue (calibration) with Aqua.

* While there may be residual algorithm biases (AC, BRDF, PS correction,
etc.), they are likely not the primary cause of the seasonal bias in Aqua.

* Cross-cal derived polarization sensitivity shows some improvement in
reducing the seasonal bias. RVS has a strong impact in the blue and will be
further investigated.
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Seasonal Bias at AERONET-OC sites
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