

MODIS TEB Calibration and Performance

MODIS Characterization Support Team, NASA GSFC (Presented by Tiejun Chang)

Page 1

MODIS TEB Design Specifications

Band	CW	Ttyp	NEdT	UC (%)	UC (K)	Primary Use
20	3.75	300	0.05	0.75	0.18	
21	3.96	335	0.20	1	2.97	
22	3.96	300	0.07	1	0.25	Surface/cloud
23	4.05	300	0.07	1	0.25	temperature
24	4.47	250	0.25	1	0.19	Atmosphere
25	4.52	275	0.25	1	0.24	temperature
27	6.72	240	0.25	1	0.27	
28	7.33	250	0.25	1	0.32	Water vapor
29	8.55	300	0.05	1	0.53	Cloud properties
30	9.73	250	0.25	1	0.42	Ozone
31	11.03	300	0.05	0.5	0.34	Surface/cloud
32	12.02	300	0.05	0.5	0.37	temperature
33	13.34	260	0.25	1	0.62	
34	13.64	250	0.25	1	0.59	
35	13.94	240	0.25	1	0.55	Cloud top
36	14.24	220	0.35	1	0.47	altitude

CW: center wavelength in micron; Ttyp: typical scene temperature in K; NEdT: noise equivalent temperature difference in K MWIR: 20-25 PV LWIR: 27-30 PC LWIR: 31-36

MODIS TEB On-orbit Calibration and Methodologies

- Regular BB Calibration
 - Linear gain coefficient b1 on a scan-by-scan basis
 - 40-scan running average b1 for L1B product
- Quarterly BB Warm-up and Cool-down (WUCD)
 - Nonlinear gain coefficients a0 and a2
 - Fixed linear coefficients for band 21
- Special Calibration Issues
 - PV LWIR bands and MWIR detector electronic crosstalk
 - Terra PC bands 32-36 optical cross-talk
 - Response versus scan angle (RVS)
 - Aqua CFPA temperature fluctuation (till March 2022)
 - Uncertainty and QA
- Calibration Assessments and Monitoring
 - Gain, NEdT, uncertainty, and telemetry temperature trending monitoring
 - Ecal and saturation monitoring
 - EV scene (Dome-C, Ocean, qDCC) trending
 - Inter-comparisons with IASI, AIRS, CrIS, and VIIRS Terra/MODIS with Aqua/MODIS,

EV Radiance:
$$L_{EV} = \frac{1}{RVS_{EV}} \left(a_0 + b_1 \cdot dn_{EV} + a_2 \cdot dn_{EV}^2 - \left(RVS_{SV} - RVS_{EV} \right) \cdot L_{SM} \right)$$

Calibration Coefficients:

$$b_{l} = \left(RVS_{BB} \cdot \varepsilon_{BB} \cdot L_{BB} + \left(RVS_{SV} - RVS_{BB}\right) \cdot L_{SM} + RVS_{BB} \cdot \left(1 - \varepsilon_{BB}\right) \cdot \varepsilon_{cav} \cdot L_{cav} - a_{0} - a_{2} \cdot dn_{BB}^{2}\right) / dn_{BB}$$

RVS: response versus scan-anglee: emissivity27gL: spectral band integrated radiancedn: digital count with background correcteda0 & a2: non-linear gain coefficientsb1: linear gain coefficient

WUCD T_{BB}: ~270 K to 315 K

Terra MODIS TEB calibration performance

Calibration performance

- Overall performance is stable.
- PV LWIR bands 27-30 electronic crosstalk increasing.
- MWIR band select detector electronic crosstalk show slight downward trend.
- NEdT and uncertainty meet specifications, except band 36.
- No noisy detector added since last STM.
 Currently total 19 noisy and 1 inoperable TEB detectors

Recent events and impacts on calibration

➤ Terra CP/FP reset (March 2022)

-- No significant changes to telemetry, gain, noise, and crosstalk contamination

-- Mirror side difference inverted; calibration offset changes made

- ➢ Terra CEM (October 2022)
 - -- Gain changes up to 1%
 - -- PV LWIR bands crosstalk slight increase
 - -- No change in QA

Aqua MODIS TEB calibration performance

Calibration performance

- Overall performance is stable.
- PV LWIR bands 27-30 electronic crosstalk is increasing, especially in recent three years
- MWIR band select detector electronic crosstalk show slight downward trend.
- > NEdT and uncertainty meet specifications.
- Three noisy detectors added since last STM. Currently total 7 noisy and 1 inoperable TEB detectors

Aqua safe mode (March 2022) impacts

- -- Gain changes: MWIR bands within 1%; PV LWIR and PC bands 2-3%
- -- PV LWIR bands crosstalk contamination saw significant increase
- -- B27(1, 3) and B30(1) (P.O.) added as noisy detectors to QA
- -- Aqua MODIS CFPA temperatures are fully controlled after outgassing

Key Telemetry Temperatures

- Terra BB temperature setting is changed to 285K in April 2020. In the Terra BB temperature trending plot, the temperature is shifted 4.96K for matching the temperature trending.
- Aqua SMIR CFPA actively controlled (83K), insufficient radiative cooler margin starting ~2006.
 - -- Increase of radiative cooler margin and improvement of temperature control since 2013
 - -- After outgassing following safe mode, CFPA temperature is fully controlled.

Terra TEB Gain Trending

Safe mode event of Feb 2016 caused gain changes for some bands, especially for PV LWIR bands.

➢ Slight gain change after CEM.

Aqua TEB Gain Trending

➤ CFPA temperature impacts on gain for LWIR bands around 2013.

Safe mode (March 2022) impacts on gains for LWIR bands

Terra TEB NEdT and uncertainty

- Safe mode event of Feb 2016 caused NEdT changes for some bands, especially for PV LWIR bands.
- ➤ No impact from Terra 2022 CP/FP reset and CEM
- ➢ Band 36 NEdT and uncertainty are above the specification

Aqua TEB NEdT and uncertainty

- > NEdT meets the specification and stable over the mission
- ➤ Band 21 NEdT is close to the specification and overall meet the specification.
- No significant impact from Aqua 2022 safe mode

MODIS TEB C6.1 and C7 algorithms

Terra C7 improvements

- **<u>MWIR crosstalk correction</u>** Crosstalk correction applied to selected detectors calibration and EV measurements.
- <u>PC bands mirror side difference reduction</u> Early mission calibration offset a0 correction to reduce mirror side difference.
- Bands 20 and 29 cold scene biases reduction Calibration offset a0 adjustments to reduce cold scene bias
- **Band 30 calibration stability** Improvement of nonlinear a0 and a2 coefficient algorithm.
- **<u>MWIR and LWIR crosstalk uncertainty</u>** Improvement on crosstalk uncertainty calculation and propagation to L1B data.

Aqua C7 improvements

- **<u>MWIR crosstalk correction</u>** Crosstalk correction applied to selected detectors calibration and EV measurements.
- **LWIR crosstalk correction** Crosstalk correction applied to calibration and EV measurements.
- <u>Calibration stability improvement</u> Application of nonlinear a2 using BB CD data to all bands and a2 adjustment for PV LWIR bands.
- <u>Mirror-side consistency</u> Application of mission-long a0 correction to reduce mirror side difference.
- **<u>MWIR and LWIR crosstalk uncertainty</u>** Improvement on crosstalk uncertainty calculation and propagation to L1B data.

Terra MWIR bands cross-talk corrections

- MWIR bands crosstalk correction for selected detectors applied to Terra MODIS C7.
- The table lists the receiving band/detector and contamination impact
- Band 24 detector 1 (sending from band 26 detector 10) shows the largest contamination for daytime measurements
- The MWIR crosstalk coefficients are gradually decreasing. The chart shows band 24 detector 1 crosstalk trending.

Terra Dand 24 Datastar 1

			Terra Danu 24 Delector 1
Band	Det	Contamination Impact	$ \begin{array}{c} 0.040 \\ \bullet \\ $
22	8	Striping over ice cloud scenes and water scenes (~0.5K).	
23	1,10	Striping over ice cloud scenes and water scenes (~0.5K).	
24	1	Striping over ice cloud scenes; 0.5 -1 K change over ocean scenes	
Dafanan			2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 Year

Reference:

(1) Wilson, T., A. Shrestha, and X. Xiong, "Electronic crosstalk impact assessment in the Terra MODIS midwave infrared bands", Proceedings Volume 10423, Sensors, Systems, and Next-Generation Satellites XXI; 104231Z, 2017
 (2) https://mcst.gsfc.nasa.gov/sites/default/files/meetings files/2018 mcst xtalk workshop.pdf.

Aqua MWIR bands cross-talk corrections

- MWIR bands crosstalk correction for selected detectors applied to Aqua MODIS C7.
- The table lists the receiving band/detector and contamination impact
- Band 24 detector 1 (sending from band 26 detector 10) shows the largest contamination for daytime measurements
- The MWIR crosstalk coefficients are gradually decreasing. The chart shows band 24 detector 1 crosstalk trending.

Band	Det	Contamination Impact	Aqua Band 24 Detector 1 0.050			
20	1	Striping over some scenes (~0.15K).	Sending: → → → → → → → → → → → → → → → → → → →			
22	1	Striping over some scenes (~0.20K).				
23	1	Large striping over ice cloud and water scenes (~0.5K).				
24	1	Striping over low BT scenes during daytime.				
25	1	Striping over some scenes (~0.20K).	0.030 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 Year			

Reference:

(1) Keller, G. R., T. Wilson, X. Geng, A. Wu, Z. Wang and X. Xiong, "Aqua MODIS Electronic Crosstalk Survey: Mid-Wave Infrared Bands,"

IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 3, pp. 1684-1697, 2019

 $(2) \ https://mcst.gsfc.nasa.gov/sites/default/files/meetings_files/2018_mcst_xtalk_workshop.pdf.$

Aqua band 24 cross-talk correction

The cross-talk correction has been tested for multiple granules. The L1B data changes are as expected. Band 24 detector 1 displays the largest image striping impact for cold scenes. The striping is greatly reduced after correction. Histograms and BT profile show detector back in-family after correction.

Terra PV LWIR Bands Cross-talk for C6.1/C7

- These plots are sending band averaged coefficients
- > Dots are coefficients from scheduled lunar observation and the lines are the LUT coefficients
- Safe mode (Feb 2016) caused the jump of the cross-talk.
- Slightly drop after CEM Oct 2022

MODIS TEB electronic cross-talk corrections

- Cross-talk corrections have been • implemented in C6.1/C7 for Terra entire mission.
- Correction example for Terra MODIS ٠ band 27 on 2022349.1145.

https://mcst.gsfc.nasa.gov/sites/default /files/meetings_files/2018_mcst_xtalk_ workshop.pdf.

Aqua PV LWIR Bands Cross-talk

- These plots are sending band averaged coefficients
- Crosstalk correction applied to entire mission for C7 and to after safe mode for C6.1
- Safe mode (March 2022) caused the changes of the cross-talk.

Aqua crosstalk coefficient adjustment and image quality

- Aqua PV LWIR crosstalk correction is applied to C7 and C6.1 for band 27 after safe mode March 2022.
- The adjustment of the crosstalk correction using Earth measurement assessment enhance the L1B image quality
- For details, see the poster "Aqua-MODIS TEB C7 electronic crosstalk correction and image quality • enhancement"

C7 algorithm example (Terra trending)

- a0 and a2 correction applied to Terra MODIS C7 for improvement on long-term stability
- The qDCC (~200K) trending assessment for the mirror side difference for C6.1 (top) and C7 (bottom) for bands 29 and 30.

C7 algorithm example (Aqua mirror side difference)

- Mission-long a0 correction applied to Aqua MODIS C7 for improvement on mirror side consistence
- The qDCC (~200K) trending assessment for the mirror side difference for C6.1 (top) and C7 (bottom) for bands 20 and 27.

Reference: Chang, T., X. Xiong, A. Shrestha, and P. C. Diaz, "Methodology development for calibration assessment using quasi-deep convective clouds with application to Aqua MODIS TEB", Earth and Space Science, vol. 7, issue 1, pp. 1-15, 2020.

MODIS TEB C6.1 and C7 algorithms comparison

MODIS TEB C6.1 calibration algorithm

MODIS TEB C7 calibration algorithm

Band	Aqua	Terra		Band	Aqua		Terra	
	Calibration algorithm	Calibration algorithm	Cross-talk correction		Calibration algorithm	Cross-talk correction	Calibration algorithm	Cross-talk correction
20	PL a ₀	$a_{0_{ms1}} = 0$		20	PL a ₀	Electronic	Corrected a ₀ ; CD a ₂	Electronic cross-
22	PL adjusted CD a ₂	a _{0 ms} =		22	with MS correction	cross-talk corrections for		talk corrections for selected
23		a _{0_ms2} free-fit _		23	CD a ₂	selected	$a_{0_{ms1}} = 0$	detectors
24	(CD: cooldown).	cooldown). $a_{0_{ms1}}$		24		detectors	$a_{0 ms2} =$ $a_{0 ms2}^{\text{free-fit}} - a_{0 ms1}^{\text{free-fit}}$	
25		CD a ₂		25				
27			PV LWIR	27	PL a ₀ with MS correction	Electronic	CD a ₂	PV LWIR
28			electronic cross-talk	28	2012 CD a ₂	cross-talk corrections for		electronic cross-talk
29				29	Corrected a ₀ ; CD a ₂	all detectors	Corrected a ₀ ; CD a ₂	
30				30	MS Corrected a ₀ ; 2012 a ₂	with additional adjustment	2003 a_0a_2 ; $a_{0_ms1} = 0$	
31	a ₀ =0, CD a ₂	$a_0 = 0$		31	Entire mission MS		a ₀ = 0	
32		CD a ₂	PC LWIR	32	corrected a ₀		CD a ₂	PC LWIR
33	a ₀ =0	_	optical cross-talk	33	CD a ₂		Early mission:	optical cross-talk
34	PL adjusted CD a ₂			34			MS corrected a ₀ Since 2003: a ₀ =0	
35	-			35			CD a ₂	
36				36				