Remote Sensing Reflectance and Derived Products

Bryan A. Franz Charles R. McClain Gene C. Feldman

and the
Ocean Biology
Processing Group

MODIS Science Team Meeting
15-16 April 2013

Collaborators

Gerhard Meister instrument calibration

P. Jeremy Werdell in-water algorithms, SeaBASS

Sean W. Bailey vicarious calibration, algorithms

Zia Ahmad atmospheric correction

and the Ocean Biology Processing Group

Contents

Overview of ocean color products

Status and validation of ocean remote sensing reflectance (Rrs) and chlorophyll products

Algorithm refinement

Future plans

What we proposed ...

- development & maintenance of Rrs product
 - atmospheric correction algorithm
 - Instrument calibration (w/MCST) & vicarious calibration
- development & maintenance of several key bio-optical algorithms
 - Standard Chlorophyll and diffuse attenuation (Kd) products
- maintenance of ALL standard ocean color products not in active development (sensor-specific adaptations, validation)
- development of consensus inherent optical properties (IOP) algorithm
 - building on existing algorithms, develop software framework for evaluating, develop consensus through international working group
- support science team and research community in implementation and global evaluation of new product algorithms (evaluation products)

Current MODIS OC Standard Product Suite

Current MODIS OC Evaluation Products

Product Suite		# Products	Algorithm Reference
1.	GIOP	15	Werdell et al. 2013
2.	GSM	3	Maritorena et al. 2002
3.	QAA	5	Lee et al. 2002, Lee et al. 2007
4.	Zeu (Lee)	1	Lee et al. 2007
5.	Zeu (Morel)	1	Morel et al. 2007
6.	$Kd(\lambda)$	3	Lee et al. 2005
7.	Kd(PAR)	1	Morel et al. 2007
8.	CHL(OCI)	1	Hu et. al 2012

MODIS Ocean Color Reprocessing

2010-2011 **preliminary C6**

R2010.0 multi-mission reprocessing (MODIS-A, MODIS-T, SeaWiFS, OCTS, CZCS) using common algorithms.

2012 May final C6

MODIS-A (R2012.0) full-mission reprocessing to incorporate final MCST C6 calibration and OBPG RVS refinements.

2013 February improved C6

MODIS-A (R2013.0) partial-mission reprocessing (2011-2013) to incorporate refined MCST C6 calibration

Coming Soon

MODIS-T (R2013.0) reprocessing to incorporate MCST C6 calibration and OBPG RVS and polarization sensitivity refinements.

http://oceancolor.gsfc.nasa.gov/WIKI/OCReproc.html

MODISA Temporal Calibration Approach

MCST final calibration for Collection 6 uses Earth view data lunar calibration + desert observations for 412 and 443 largely reproduces previous SeaWiFS cross-cal results

But still some issues for ocean color significant residual time-trend at 412 (due to scan-edge changes) residual cross-scan and striping artifacts

Additional cross-scan correction developed by OBPG relative to MCST C6 desert-based calibration based on contemporaneous Aqua L3 15-day Rrs derive time-varying RVS shape per detector & mirror-side applied to all OC bands 412-678

See talk by Gerhard Meister on Wednesday

OBPG MODISA Cross-Scan Corrections at 412nm relative to MCST desert-based C6 calibration

OBPG MODISA Cross-Scan Corrections relative to MCST desert-based C6 calibration

MODISA R2010.0 Temporal Anomalies (2002-2012)

Deep-Water

Big Trending Errors

MODISA R2012.0 Temporal Anomalies (2002-2012)

Deep-Water

MODIST R2010.0 Temporal Anomalies (2002-2012)

Deep-Water

Big Trending Errors

MODIST R2013.0 Temporal Anomalies (2002-2012)

Deep-Water

Test Results
after MCST C6 Calibration
and
OBPG cross-cal to MODISA
for RVS and polarization

MODISA (R2013.0) Rrs vs Field Measurements

Mean APD 12%, Mean Bias < 10%, $R^2 > 0.9$

MODIST (R2010.0) Rrs vs Field Measurements

Mean APD 13-20%, Mean Bias < 15%, $R^2 > 0.8$

MODIST (R2010.0) vs MODISA (R2013.0)

MODIS to MODIS scatter 1/2 the MODIS to in situ scatter!

Rrs Uncertainty

Hu,C., L. Feng, Z. Lee (2013). Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements, Remote Sensing of Environment, Volume 133, 15.

Chl_a in Good Agreement with Field Measurement

Mean APD 35%, Mean Bias < 15%, $R^2 > 0.8$

Multi-mission Chlorophyll Anomaly Record

Multi-mission Chlorophyll Anomaly Record

Following Berenfeld et al. 2006 Mean SST > 15C

Multi-mission Chlorophyll Anomaly Record

Following Berenfeld et al. 2006 Mean SST > 15C

Chlorophyll Algorithm Refinement

OCI algorithm: Line height algorithm for chlorophyll < 0.25 mg m⁻³, merged with OC3/OC4 max band ratio algorithm for chlorophyll > 0.3 mg m⁻³.

Hu, C., Z. Lee, and B.A. Franz (2012). Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res., 117, C01011, doi:10.1029/2011JC007395.

MODISA Standard OC3 Chlorophyll

MODISA Evaluation OCI Chlorophyll

SeaWiFS Standard OC4 Chlorophyll

SeaWiFS Evaluation OCI Chlorophyll

MERIS Standard OC4 Chlorophyll

MERIS Evaluation OCI Chlorophyll

Improved Agreement in Chl Distribution

Deep-Water Monthly Mean, MODISA (red) & SeaWiFS (black)

Chlorophyll Algorithm Refinement

improved agreement between sensors in clear water

Hu, C., Z. Lee, and B.A. Franz (2012). Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res., 117, C01011, doi:10.1029/2011JC007395.

Beyond Chlorophyll

Separation of Constituent Absorption

Werdell, P.J., B.A. Franz, S.W. Bailey, G.C. Feldman and 15 co-authors (2013). Generalized ocean color inversion model for retrieving marine inherent optical properties, Applied Optics 52, 2019-2037.

Beyond Chlorophyll

Future Plans

Next multi-mission reprocessing anticipated 2013-2014

```
Incorporate algorithm refinements
advancements in atmospheric correction (Ahmad, Franz)
new chlorophyll algorithm (Hu, Werdell)
updates to PIC algorithm (Balch)
updates to PAR algorithm (Frouin)
```

Expand standard product suite
IOP products (algorithm TBD)
Rrs uncertainties (method TBD)
others?

Change data formats moving to CF-compliant netCDF4

Ocean Science Team Members

MODIS

- 1. Barney Balch
- 2. Peter Cornillon
- 3. Heidi Sosik (Hui Feng)
- 4. Bryan Franz*
- 5. Watson Gregg
- 6. Antonio Mannino
- 7. Stephane Maritorena
- 8. Galen McKinley (Colleen Mouw)
- 9. Peter Minnett
- 10. Norm Nelson
- 11. Crystal Thomas
- 12. Toby Westberry

* Discipline Leads

NPP/VIIRS

- 1. Barney Balch
- 2. Watson Gregg
- 3. Peter Minnett
- 4. Dave Siegel
- 5. Kevin Turpie*
- 6. Menghua Wang

Chlorophyll Algorithm Refinement

Standard OCx Band Ratio Algorithm better at mid to high chlorophyll

$$Chl_{OC4} = 10^{y}$$

$$y = a_0 + a_1\chi + a_2\chi^2 + a_3\chi^3 + a_4\chi^4$$

$$\chi = \log_{10}(R) \text{ and } R = \max(R_{rs}(443, 490, 510))/R_{rs}(555)$$

New CI Line Height Algorithm better at low chlorophyll

CI = $R_{rs}(555) - [R_{rs}(443) + (555-443)/(670-443)*(R_{rs}(670) - R_{rs}(443))],$ which is equivalent to CI $\approx R_{rs}(555) - 0.5(R_{rs}(443) + R_{rs}(670)).$

Proposed OCI Algorithm

$$\begin{split} Chl_{OCI} &= Chl_{CI} \big[\text{for } Chl_{CI} \leq 0.25 \text{ mg m}^{-3} \big] \\ &\quad Chl_{OC4} \big[\text{for } Chl_{CI} > 0.3 \text{ mg m}^{-3} \big] \\ &\quad \alpha \times Chl_{OC4} + \beta \times Chl_{CI} \big[\text{for } 0.25 < Chl_{CI} \leq 0.3 \text{ mg m}^{-3} \big] \end{split}$$

Hu, C., Z. Lee, and B.A. Franz (2012). Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res., 117, C01011, doi:10.1029/2011JC007395.

C6 Calibration introduced trend in 412

GIOP Framework

$$r_{rs}(\lambda, 0^{-}) = \frac{R_{rs}(\lambda)}{0.52 + 1.7R_{rs}(\lambda)}$$

Morel f/Q - or -Gordon quadratic

$$r_{rs}(\lambda, 0^{-}) = \overline{G(\lambda)} \left(\frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)} \right)$$

Levenberg-Marquardt Amoeba (downhill simplex) SVD matrix inversion LUD matrix inversion

GIOP Framework

Beyond Chlorophyll

$$R_{rs}(\lambda) \approx \left(\frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}\right)$$

$$b_b(\lambda) = b_{bw}(\lambda) + \sum M_{bp} b_{bp}^*(\lambda)$$

$$a(\lambda) = a_w(\lambda) + \sum M_{dg} a_{dg}^*(\lambda) + \sum M_{\phi} a_{\phi}^*(\lambda)$$