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What we proposed … 
•  development & maintenance of Rrs product 

–  atmospheric correction algorithm 
–  Instrument calibration (w/MCST) & vicarious calibration 

•  development & maintenance of several key bio-optical algorithms 
–  Standard Chlorophyll and diffuse attenuation (Kd) products  

•  maintenance of ALL standard ocean color products not in active 
development (sensor-specific adaptations, validation) 

  
•  development of consensus inherent optical properties (IOP) algorithm 

–  building on existing algorithms, develop software framework for 
evaluating, develop consensus through international working group 

 
•  support science team and research community in implementation and 

global evaluation of new product algorithms  (evaluation products) 



Current MODIS OC Standard Product Suite 

1.  Rrs(λ) 
2.  Ångstrom 
3.  AOT 
4.  Chlorophyll a 
5.  Kd(490) 
6.  POC 
7.  PIC 
8.  CDOM_index 
9.  PAR 
10.  iPAR 
11.  nFLH 

Level-2 OC Product 

 
Gordon and Wang 1994, Ahmad et al 2010, etc. 
 
O'Reilly et al. 1998 (OC3) updated by Werdell 
Werdell (KD2) algorithm (similar to OC3) 
Stramski et al. 2008 
Balch et al. 2005, Gordon et al. 2001 
Morel and Gentili 2009 
Frouin et al. 2003 
 
Behrenfeld et al. 2009  

Algorithm Reference 
Rrs(412) 
Rrs(443) 
Rrs(469) 
Rrs(488) 
Rrs(531) 
Rrs(547) 
Rrs(555) 
Rrs(645) 
Rrs(667) 
Rrs(678) 



Current MODIS OC Evaluation Products 

1.  GIOP 
2.  GSM 
3.  QAA 
4.  Zeu (Lee) 
5.  Zeu (Morel) 
6.  Kd(λ) 
7.  Kd(PAR) 
8.  CHL(OCI) 

Product Suite 

Werdell et al. 2013 
Maritorena et al. 2002 
Lee et al. 2002, Lee et al. 2007 
Lee et al. 2007 
Morel et al. 2007 
Lee et al. 2005 
Morel et al. 2007 
Hu et. al 2012 

Algorithm Reference      # Products      

15 
3 
5 
1 
1 
3 
1 
1 



http://oceancolor.gsfc.nasa.gov/WIKI/OCProd.html 



Ocean Color Product Validation 

http://seabass.gsfc.nasa.gov/ 





MODIS Ocean Color Reprocessing 
2010-2011 
  R2010.0 multi-mission reprocessing (MODIS-A, MODIS-T, 

SeaWiFS, OCTS, CZCS) using common algorithms. 

2012 May 
 MODIS-A (R2012.0) full-mission reprocessing  to incorporate final 
MCST C6 calibration and OBPG RVS refinements. 

 

2013 February 
 MODIS-A (R2013.0) partial-mission reprocessing (2011-2013) to 
incorporate refined MCST C6 calibration 

 

Coming Soon 
 MODIS-T (R2013.0) reprocessing to incorporate MCST C6 
calibration and OBPG RVS and polarization sensitivity refinements.     

http://oceancolor.gsfc.nasa.gov/WIKI/OCReproc.html 

preliminary C6 

final C6 

improved C6 



MODISA Temporal Calibration Approach 

MCST final calibration for Collection 6 uses Earth view data 
 lunar calibration + desert observations for 412 and 443 
 largely reproduces previous SeaWiFS cross-cal results 

But still some issues for ocean color 
 significant residual time-trend at 412 (due to scan-edge changes) 
 residual cross-scan and striping artifacts 

 

Additional cross-scan correction developed by OBPG 
 relative to MCST C6 desert-based calibration 
 based on contemporaneous Aqua L3 15-day Rrs 
 derive time-varying RVS shape per detector & mirror-side 
 applied to all OC bands 412-678 

See talk by Gerhard Meister on Wednesday 



OBPG MODISA Cross-Scan Corrections at 412nm 
relative to MCST desert-based C6 calibration 
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Scan Pixel 

412nm, Detector 5, Mirror-Side 1 

2002 2012 Mission Time 



OBPG MODISA Cross-Scan Corrections 
relative to MCST desert-based C6 calibration 

412nm 443nm 

488nm 531nm 

2002 2012 Mission Time 
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MODISA R2010.0 Temporal Anomalies (2002-2012) 

Rrs(443) Rrs(547) 

Chlorophyll 

Deep-Water 

Big 
Trending 

Errors 



MODISA R2012.0 Temporal Anomalies (2002-2012) 

Rrs(443) Rrs(547) 

Chlorophyll 

Deep-Water 

consistent with 
expectation 



MODIST R2010.0 Temporal Anomalies (2002-2012) 

Rrs(443) Rrs(547) 

Chlorophyll 

Deep-Water 

Big  
Trending 

Errors 



MODIST R2013.0 Temporal Anomalies (2002-2012) 

Rrs(443) Rrs(547) 

Chlorophyll 

Deep-Water 
preliminary 

Test Results 
after MCST C6 Calibration 

and 
OBPG cross-cal to MODISA 

for RVS and polarization 



MODISA (R2013.0) Rrs vs Field Measurements  
Rrs(443) Rrs(488) Rrs(547) 

Mean APD 12%, Mean Bias < 10%, R2 > 0.9 

SeaBASS + AERONET-OC 



MODIST (R2010.0) Rrs vs Field Measurements  
Rrs(443) Rrs(488) Rrs(547) 

Mean APD 13-20%, Mean Bias < 15%, R2 > 0.8 

SeaBASS + AERONET-OC 



MODIST (R2010.0) vs MODISA (R2013.0) 
Rrs(443) Rrs(488) Rrs(547) 

MODIS to MODIS scatter 1/2 the MODIS to in situ scatter! 



Rrs Uncertainty 

Hu,C., L. Feng, Z. Lee (2013). Uncertainties of SeaWiFS and MODIS remote 
sensing reflectance: Implications from clear water measurements, Remote 
Sensing of Environment, Volume 133, 15.  
 

Author's personal copy

For each sensor, either SeaWiFS or MODISA, excellent agreement
in Rrs(λ) was found between NA and SP for all but the 412-nm
bands. This result further supports the approach of using the
ChlOCX≈ChlOCI constraint to determine Rrs,true. The standard deviations
around the Rrs,true values for the blue-green bands (except 412 nm)
are extremely small (b2–3%) for Chl≤0.1 mg m−3, suggesting very sta-
ble Rrs,true values under all conditions. The relatively large standard devi-
ations for the red bands (10–30%) are due to the extremely small Rrs,true
values in the red bands.

For each region (NA or SP), there is a slight relative difference
(~b2%) for Rrs,true(443) between MODISA and SeaWiFS (Fig. 5a).
While the reason is not well understood, the small difference will not
affect the Rrs uncertainty estimates as these are the measures of the
data spread. The relative difference is larger between Rrs,true(667) of
MODIS and Rrs,true(670) of SeaWiFS (Fig. 5c) because of the slight differ-
ence in the wavelengths and the small Rrs,true values (note that the
standard deviations overwhelm these cross-sensor differences). The
highest relative difference was found between Rrs,true(547) of MODIS
and Rrs,true(555) of SeaWiFS (Fig. 5b) because of the wavelength
difference. For each sensor and pre-defined ChlOCI level, there is also a
noticeable difference in Rrs,true(412) between NA and SP (dashed versus
solid lines in Fig. 5d–e), suggesting varying proportions of CDOM ab-
sorption in the two contrasting ocean gyres (Siegel et al., 2002). Never-
theless, the relative variability around each Rrs,true value, asmeasuredby
the standard deviations in Table 1 and Fig. 5, is much smaller than the

Rrs data spread in Fig. 4. Thus, Rrs,true can be used as stable references
to gauge the degree of the Rrs spread (i.e., Rrs uncertainties).

3.2. Rrs uncertainties for clear waters

The relative Rrs uncertainties, for each pre-defined ChlOCI level, of
both SeaWiFS and MODISA are shown in Fig. 6 and listed in Table 2.
For clarity, although all spectral bands are listed in Table 2, only the
RGB bands are plotted in Fig. 6. Note that these uncertainties are
not the γ values in Eq. (2), but the standard deviation terms (σ) of
Eq. (1), and they provide a statistical measure for error probability
around the mean. For example, for a normal distribution with a zero
mean bias, an uncertainty value of 10% suggests that about 68% of the
pixels have relative Rrs errors b10%. Note that although our focus was
on the 3×3 median filtered Rrs data because the 3×3 pixelization
noise would be mostly removed in the global data products, the sensi-
tivity study using the raw Rrs data yielded near-identical results for
MODISA and some small (but noticeable) uncertainty increases for
SeaWiFS. This is due to the much higher signal-to-noise (SNR) of
MODISA than SeaWiFS (Hu et al., 2012a).

An immediate conclusion from these results is that the ocean color
mission goal of achieving Rrs absolute accuracy or uncertainties for
the blue wavelengths (e.g., 443 nm) to within 5% for oligotrophic
oceans (by definition, Chl≤0.1 mg m−3) has been met by both
SeaWiFS and MODISA. This is a new finding that has never been

Fig. 6. Relative uncertainties (in percentage, σ from Eq. 1) of SeaWiFS and MODISA Rrs data for the North Atlantic (NA, black) and South Pacific (SP, blue). The x-axis is ChlOCI. About
68% of the non-flagged (i.e., valid) pixels have Rrs errors (gauged against the corresponding Rrs,true) less than the uncertainties. The solid lines represent uncertainties with 3×3
pixelization (specking) noise removed with a median filter, and they are tabulated in Table 2. The dashed lines represent the raw Rrs data without filtering the noise. The noise
removal only affects SeaWiFS, with minimal impact on MODISA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

174 C. Hu et al. / Remote Sensing of Environment 133 (2013) 168–182



Chla in Good Agreement with Field Measurement 

Mean APD  35%, Mean Bias < 15%, R2 > 0.8 

MODISA MODIST SeaWiFS 



Multi-mission Chlorophyll Record 

Oligotrophic Water 

SeaWiFS MODISA NASA VIIRS 



Multi-mission Chlorophyll Record 

Oligotrophic Water 

SeaWiFS MODISA NASA VIIRS MERIS 

Oligotrophic Water 

SeaWiFS MODISA NASA VIIRS 



MERIS 

Multi-mission Chlorophyll Record 

Eutrophic Water 

SeaWiFS MODISA NASA VIIRS 

Oligotrophic Water 

SeaWiFS MODISA NASA VIIRS 

10%-20% difference due to lack of 510 nm 



Multi-mission Chlorophyll Record 

Eutrophic Water 

SeaWiFS MODISA NASA VIIRS 

Oligotrophic Water 

SeaWiFS MODISA NASA VIIRS 

10%-20% difference due to lack of 510 nm 

MERIS 

MERIS 



Multi-mission Chlorophyll Anomaly Record 

Eutrophic Water 

SeaWiFS MODISA NASA VIIRS 

Oligotrophic Water 

SeaWiFS MODISA NASA VIIRS MERIS 

MERIS 



Multi-mission Chlorophyll Anomaly Record 

PSO Anomaly 

SeaWiFS MODISA NASA VIIRS MERIS 

PSO Following  
Berenfeld et al. 2006 
Mean SST > 15C 



Multi-mission Chlorophyll Anomaly Record 

PSO Anomaly 

SeaWiFS MODISA NASA VIIRS MERIS 

Multivariate Enso Index (MEI) 

PSO Following  
Berenfeld et al. 2006 
Mean SST > 15C 



OCI algorithm: Line height algorithm for chlorophyll < 0.25 mg m-3, merged with 
OC3/OC4 max band ratio algorithm for chlorophyll > 0.3 mg m-3.  

 
 
 
 
 
 
 
 
 
 
 

Hu, C., Z. Lee, and B.A. Franz (2012). Chlorophyll-a algorithms for oligotrophic oceans:  
A novel approach based on three-band reflectance difference, J. Geophys. Res., 117,  
C01011, doi:10.1029/2011JC007395. 

Chlorophyll Algorithm Refinement 



ChlOC3 
Flags off 

MODISA Standard OC3 Chlorophyll 



ChlCI 
Flags off 

MODISA Evaluation OCI Chlorophyll 



ChlOC4 

SeaWiFS Standard OC4 Chlorophyll 



ChlOCI 

SeaWiFS Evaluation OCI Chlorophyll 



Grand Bahama 

ChlOC3 

MERIS Standard OC4 Chlorophyll 



Grand Bahama 

ChlOCI 

MERIS Evaluation OCI Chlorophyll 



Improved Agreement in Chl Distribution 
Deep-Water Monthly Mean, MODISA (red) & SeaWiFS (black) 

Fall 
2002 

Fall 
2010 

OC3 vs OC4 

OC3 vs OC4 OC3I vs OC4I 

OC3I vs OC4I 



Chlorophyll Algorithm Refinement 
improved agreement between sensors in clear water 

Hu, C., Z. Lee, and B.A. Franz (2012). Chlorophyll-a algorithms for oligotrophic oceans:  
A novel approach based on three-band reflectance difference, J. Geophys. Res., 117,  
C01011, doi:10.1029/2011JC007395. 

MODISA/SeaWiFS Ratio MERIS/SeaWiFS Ratio 

OC3/OC4 OC4 

OCI OCI 

MERIS  
offset control 

disabled 



Beyond Chlorophyll 

Figure 1 
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Figures
Click here to download Figures: RSE_SeaWiFS_Figs_Mar13_2013.pdf

Siegel et al. 2013, RSE 



Separation of Constituent Absorption  

GIOP-DC, produces global IOPs of comparable qual-
ity to other common algorithms [41]. As GIOP can
easily accommodate new eigenvectors and advanced
approaches as the research community evolves, we
anticipate and recommend that GIOP-DC be up-
dated routinely. Several features recently included,
or in the queue for inclusion, into GIOP include:
(1) temperature and salinity dependent aw!λ" and
bbw!λ" [29]; (2) alternate mathematical inversion
approaches; (3) alternate eigenvector parameteriza-
tions; (4) alternate Rrs!λ"-IOP relationships [e.g.,
G!λ" from Lee [23]]; (5) consideration of Raman in-
elastic scattering; (6) ensemble solution methods,
such as Wang et al. [9] and Brando et al. [39]; and
(7) dynamic configuration based on detected OWTs,
such as Vantrepotte et al. [49] and Moore et al. [45]
(provisional parameters for which were recently de-
rived). We hope our sensitivity analyses and sub-
sequent discussion will provide the community
guidance on future directions for in situ data collec-
tion and algorithm refinement to support advancing
SAAs (through GIOP) and their application. We also
expect the GIOP framework to facilitate analyses as-
sociated with new mission planning. Its inherent
ability to operate on any array of wavelengths, for ex-
ample, provides a resource for identifying new chan-
nels to be added to forthcoming satellite instruments
(e.g., ultraviolet bands).

Appendix A

In practice, most common, published SAAs fall into
three broad classes, hereafter referred to as spectral
optimization, spectral deconvolution, and bulk inver-
sion. In this Appendix, we briefly introduce each
class with attention to the interoperability of the
GIOP framework and several widely use SAAs from
each class. Note, this classification includes so-called
inversion algorithms [those that derive IOPs from
Rrs!λ" via inverse solutions to Eqs. (2) and (3)] and
does not explicitly consider empirical (statistical)
or neural-network approaches.

SAAs in the spectral optimization class operate in
the manner described for GIOP in Section 2B. That
is, eigenvectors are predefined [e.g., for b#bp!λ", a

#
dg!λ",

and a#
ϕ!λ"] and simultaneous solutions for the

eigenvalues (e.g., for Bbp, Adg, and Aϕ) are achieved
via linear (matrix) or nonlinear (least squares) opti-
mization of Eq. (9). The system is overdetermined if
Nλ exceeds the number of unknowns. Examples in-
clude the SAAs described in Roesler and Perry [3],
Hoge and Lyon [4], Garver and Siegel [5], Maritorena
et al. [8], Wang et al. [9], and Devred et al. [10]. These
SAAs predominantly differ in their choice of eigen-
vectors and inversionmethod and, in principle, GIOP
can be configured to mimic each of them. For exam-
ple, the Garver–Siegel–Maritorena (GSM) algorithm
can be executed within the GIOP framework by
assigning user-defined Sbp, Sdg, and a#

ϕ!λ" from
Maritorena et al. [8], G!λ" from Gordon et al. [21],
and LM optimization. IOPs derived using GSM
and GIOP with a GSM-like configuration compared

extremely well for the NOMAD, IOCCG, and match-
up data sets (results not shown). Validation results
for GIOP-DC and GSM also compared favorably with
MPD for GSM-derived bbp!443", a!443", adg!443",
and aϕ!443" at 22%, 27%, 29%, and 40% for NOMAD
and 22%, 26%, 20%, and 52% for the IOCCG data set
(Figs. 10–12; see Table 2 for equivalent GIOP-DC sta-
tistics). The nuances in quality assurance metrics,
success and failure conditions, and fail-safe behavior
that accompany each SAA listed above, however,
may not be currently available within the GIOP
framework.

SAAs in the spectral deconvolution class simi-
larly assign eigenvectors, but operate in a step-wise
fashion to determine the spectral backscattering and
absorption coefficients, rather than optimizing si-
multaneous solutions of the eigenvalues. Examples
include the SAAs described in Lee et al. [7] [the
quasi-analytic algorithm (QAA)], Smyth et al. [11],
and Pinkerton et al. [57]. Broadly speaking, SAAs
in this class operate via the following steps:

(1) Assign Sbp, Sdg, and ϵϕ [a partial eigenvector
for a#

ϕ!λ" defined as a#
ϕ!412"∕a#

ϕ!443"].
(2) Estimate bbp!λ0", where λ0 is typically a green

wavelength.
(3) Calculate bbp!λ" as the product of bbp!λ0"

and Eq. (8) (requires Sbp).

Fig. 10. MODISA bbp!443" for GIOP-DC (panel A), GSM (run us-
ing GIOP; panel B), and QAA (panel C). The algorithms were ap-
plied to the monthly MODISA level-3 bin file for March 2010.
Units are m−1.
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(4) Calculate a!λ" using bbp!λ" and Eq. (2)
[requires G!λ"].

(5) Estimate adg!λ0", where λ0 is typically a blue
wavelength (requires Sdg and ϵϕ).

(6) Calculate adg!λ" as the product of adg!λ0" and
Eq. (5) (requires Sdg).

(7) Calculate aϕ!λ" as a!λ" − aw!λ" − adg!λ".

Note that bbp!λ0" and adg!λ0" are equivalent to Bbp
and Adg, respectively, in Eq. (9). These SAAs differ
in their assignment of Sbp, Sdg, and ϵϕ, and in their
treatment of steps 2 and 4. A complete review of the
differences exceeds the scope of this paper, however,
several merit mentioning. Both Smyth et al. [11] and
Pinkerton et al. [57] assign constant values for Sbp,
Sdg, and ϵϕ, whereas Lee et al. [7] dynamically esti-
mates all three using empirical relationships based
on Rrs!λ". GIOP supports the Lee et al. [7] estimates
of Sbp and Sdg, with the former included as part of
GIOP-DC (Table 1). Both Smyth et al. [11] and
Pinkerton et al. [57] adopt iterative approaches to
deriving bbp!λ0" (step 2) and G!λ" (step 4). Using a
LUT for G!λ" that is keyed on environmental geom-
etries and absorption and scattering coefficients,
both SAAs iterate until either the selectedG!λ" or de-
rived a!λ" stabilize. In contrast, Lee [7] adopts G!λ"
from Gordon et al. [21] with modified coefficients
and dynamically estimates a!λ0" using an empirical
relationship based on Rrs!λ", which is in turn used to
derive bbp!λ0" via rearrangement of Eqs. (2) and (3).
Note that SAAs in this class can be halted at step 4

to enable testing or application of alternate ap-
proaches to decompose a!λ" into its component parts
(e.g., [17] and [58]). At this time, GIOP does not sup-
port the step-wise deconvolution approach typical
of this SAA class. However, validation results for
GIOP-DC and QAA compared favorably with MPD
for QAA-derived bbp!443", a!443", adg!443", and
aϕ!443" at 38%, 21%, 30%, and 28% for NOMAD
and 16%, 14%, 19%, and 61% for the IOCCG data
set (Figs. 10–12; see Table 2 for equivalent GIOP-
DC statistics). Per their design, SAAs in this class
always report ΔRrs # 0, unlike SAAs in the spectral
optimization class.

SAAs in the bulk inversion class do not assign ei-
genvectors, that is, they do not predefine spectral
shapes for the absorption or scattering coefficients.
The approach introduced in Loisel and Stramski
(LAS) [6] provides a widely used example. Briefly,
LAS exploits a relationship between the diffuse at-
tenuation coefficient for downwelling irradiance,
Kd!λ" (m−1), solar zenith angle, and the absorption
and scattering coefficients (e.g., [59]). As such, it re-
quires the remote estimation of Kd!λ" from Rrs!λ".
LAS sequentially estimates bbp!λi" and a!λi" at each
wavelength λi using Kd!λi", environmental geom-
etries, and LUTs derived from radiative transfer
(Monte Carlo) simulations. By estimating IOPs at
each wavelength independently, spectral shape func-
tions, such as Sbp, can be calculated dynamically
and considered output products [60]. GIOP supports
the use of LAS-derived Sbp and (tabulated) b$bp!λ" as

Fig. 11. As in Figure 10, but for adg!443". Units are m−1. Fig. 12. As in Figure 10, but for aϕ!443". Units are m−1.
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(4) Calculate a!λ" using bbp!λ" and Eq. (2)
[requires G!λ"].

(5) Estimate adg!λ0", where λ0 is typically a blue
wavelength (requires Sdg and ϵϕ).

(6) Calculate adg!λ" as the product of adg!λ0" and
Eq. (5) (requires Sdg).

(7) Calculate aϕ!λ" as a!λ" − aw!λ" − adg!λ".

Note that bbp!λ0" and adg!λ0" are equivalent to Bbp
and Adg, respectively, in Eq. (9). These SAAs differ
in their assignment of Sbp, Sdg, and ϵϕ, and in their
treatment of steps 2 and 4. A complete review of the
differences exceeds the scope of this paper, however,
several merit mentioning. Both Smyth et al. [11] and
Pinkerton et al. [57] assign constant values for Sbp,
Sdg, and ϵϕ, whereas Lee et al. [7] dynamically esti-
mates all three using empirical relationships based
on Rrs!λ". GIOP supports the Lee et al. [7] estimates
of Sbp and Sdg, with the former included as part of
GIOP-DC (Table 1). Both Smyth et al. [11] and
Pinkerton et al. [57] adopt iterative approaches to
deriving bbp!λ0" (step 2) and G!λ" (step 4). Using a
LUT for G!λ" that is keyed on environmental geom-
etries and absorption and scattering coefficients,
both SAAs iterate until either the selectedG!λ" or de-
rived a!λ" stabilize. In contrast, Lee [7] adopts G!λ"
from Gordon et al. [21] with modified coefficients
and dynamically estimates a!λ0" using an empirical
relationship based on Rrs!λ", which is in turn used to
derive bbp!λ0" via rearrangement of Eqs. (2) and (3).
Note that SAAs in this class can be halted at step 4

to enable testing or application of alternate ap-
proaches to decompose a!λ" into its component parts
(e.g., [17] and [58]). At this time, GIOP does not sup-
port the step-wise deconvolution approach typical
of this SAA class. However, validation results for
GIOP-DC and QAA compared favorably with MPD
for QAA-derived bbp!443", a!443", adg!443", and
aϕ!443" at 38%, 21%, 30%, and 28% for NOMAD
and 16%, 14%, 19%, and 61% for the IOCCG data
set (Figs. 10–12; see Table 2 for equivalent GIOP-
DC statistics). Per their design, SAAs in this class
always report ΔRrs # 0, unlike SAAs in the spectral
optimization class.

SAAs in the bulk inversion class do not assign ei-
genvectors, that is, they do not predefine spectral
shapes for the absorption or scattering coefficients.
The approach introduced in Loisel and Stramski
(LAS) [6] provides a widely used example. Briefly,
LAS exploits a relationship between the diffuse at-
tenuation coefficient for downwelling irradiance,
Kd!λ" (m−1), solar zenith angle, and the absorption
and scattering coefficients (e.g., [59]). As such, it re-
quires the remote estimation of Kd!λ" from Rrs!λ".
LAS sequentially estimates bbp!λi" and a!λi" at each
wavelength λi using Kd!λi", environmental geom-
etries, and LUTs derived from radiative transfer
(Monte Carlo) simulations. By estimating IOPs at
each wavelength independently, spectral shape func-
tions, such as Sbp, can be calculated dynamically
and considered output products [60]. GIOP supports
the use of LAS-derived Sbp and (tabulated) b$bp!λ" as

Fig. 11. As in Figure 10, but for adg!443". Units are m−1. Fig. 12. As in Figure 10, but for aϕ!443". Units are m−1.
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GIOP 

GSM 

QAA 

Werdell, P.J., B.A. Franz, S.W. Bailey, G.C. Feldman and 15 co-authors (2013). Generalized ocean  
color inversion model for retrieving marine inherent optical properties, Applied Optics 52, 2019-2037.  

CDOM & detritus Phytoplankton Particle Backscatter 
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CDOM & detritus 
GIOP-DC 
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Future Plans 

Next multi-mission reprocessing anticipated 2013-2014 
 
Incorporate algorithm refinements 

 advancements in atmospheric correction (Ahmad, Franz) 
 new chlorophyll algorithm (Hu, Werdell) 
 updates to PIC algorithm (Balch) 
 updates to PAR algorithm (Frouin) 

 
Expand standard product suite 

 IOP products (algorithm TBD) 
 Rrs uncertainties (method TBD) 
 others ? 

 
Change data formats 

 moving to CF-compliant netCDF4 
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Chlorophyll Algorithm Refinement 

severe sun glint, a new color index (CI) was developed for
satellite ocean color observations [Hu, 2011]. Instead of
using a blue-green band ratio as the independent variable,
the CI is calculated as the difference between the green-
band reflectance and a reference formed linearly by the blue
and red bands. This is similar to the design of the MODIS
fluorescence line height [Letelier and Abott, 1996] and
Medium-Resolution Imaging Spectrometer (MERIS) maxi-
mal chlorophyll index [Gower et al., 2005], except that the
bands are shifted to blue-green-red. Hu [2009] used a similar
form to detect and quantify the reflectance peak in the
MODIS 859 nm band and proved that the floating algae
index (FAI), derived using the 645-859-1240 band combina-
tion, was much less sensitive to variable observing conditions
(aerosols, sun glint, thin clouds, solar/viewing geometry)
than band-ratio algorithms. The MODIS CI appears to be
relatively insensitive to residual errors due to imperfect
empirical glint correction, and in glint-free areas, it is also
well correlated with MODIS band-ratio Chl [Hu, 2011],
suggesting that a new Chl algorithm might be developed
to remove residual atmosphere correction-related errors and
image noise.
[6] Inspired by these recent works, a new empirical algo-

rithm to retrieve Chl using the CI as the independent variable
is developed and validated in this paper. Using data collected
primarily by both SeaWiFS and MODIS/Aqua, as well as
other satellite instruments, we evaluate the performance of
such a band-difference algorithm (i.e., the CI algorithm or
CIA) compared with the OCx band-ratio algorithms. We
demonstrate and argue that because the CI is much more
tolerant than the band ratio to various perturbations in sensor
hardware and data processing (e.g., instrument noise, resid-
ual errors in atmospheric correction, whitecap and sun glint
corrections, stray light contamination), and also more toler-
ant to perturbations of Chl-independent particle backscatter-
ing from the water column, the CIA is superior to band-ratio
algorithms in deriving a more consistent and accurate Chl
climate data record for most oligotrophic oceans.
[7] This paper is arranged as follows. The principles to

“measure” Chl from space, although found in the refereed
literature, are briefly introduced for the reader’s convenience.
The in situ and satellite data used to develop and validate the
new algorithm are then described. Following that, the new
Chl algorithm (CIA) is described and validated for SeaWiFS
and MODIS/Aqua. Its sensitivity to errors and perturbations,
compared with the OC4 algorithm, is analyzed in detail and
further demonstrated using satellite measurements. Sample
time series at several arbitrarily selected oligotrophic ocean
sites as well as from global-scale data are used to evaluate the
performance of the new algorithm. Finally, we discuss the
new algorithm’s applicability to other satellite instruments
such as MERIS and CZCS and discuss its potential to
improve data quality, time series and cross-sensor consis-
tency, and image quality in feature detection.

2. Principles to “Measure” Chl From Space

[8] A multiband ocean-color satellite instrument measures
the top-of-atmosphere radiance or reflectance in several
spectral bands covering the visible to the near-infrared
domain. On SeaWiFS, the spectral bands are centered at
l = 412, 443, 490, 510, 555, 670, 765, and 865 nm. On

MODIS/Aqua, they are centered at l = 412, 443, 488, 531,
547, 667, 678, 748, and 869 nm. After radiometric calibra-
tion (including in-orbit vicarious calibration [Franz et al.,
2007]) the calibrated at-sensor reflectance (rt(l)), after
accounting for the effects of ozone and other gaseous
absorption, is used to derive the at-sea remote-sensing
reflectance (Rrs) [Gordon, 1997]. With some simplifications,
this can be expressed as

rt lð Þ ¼ rr lð Þ þ rar lð Þ þ t lð Þrwc lð Þ þ T lð Þrg lð Þ

þ pt lð Þt0 lð ÞRrs lð Þ; ð1Þ

where rr is that due to Rayleigh scattering; rar is that due to
aerosol scattering and aerosol-Rayleigh interactions; rwc is
the whitecap reflectance; rg is the sun-glint reflectance; T
and t are the direct and diffuse transmittance from the target
(pixel of the imagery) to the sensor (satellite), respectively;
and t0 is the diffuse transmittance from the sun to the target.
[9] Deriving Rrs(l) from rt(l) is through a sophisticated

atmospheric correction, which uses lookup tables for aerosol
and molecular properties [Gordon and Wang, 1994a, 1994b;
Ahmad et al., 2010; Bailey et al., 2010] after removing
contributions from whitecaps [Frouin et al., 1996] and sun
glint [Wang and Bailey, 2001]. The retrieved Rrs(l) is then
used as the input to an established bio-optical inversion
model to derive Chl. For the OC4 algorithm applied to
SeaWiFS, where “4” stands for four bands, Chl is derived as
[O’Reilly et al., 2000]

ChlOC4 ¼ 10 y

y ¼ a0 þ a1cþ a2c2 þ a3c3 þ a4c4

c ¼ log10 Rð Þ and R ¼ max Rrs 443; 490; 510ð Þð Þ=Rrs 555ð Þ;
ð2Þ

where a0 – a4 are the empirical regression coefficients, for
which the current values (version 6) are 0.3272, %2.9940,
2.7218, %1.2259, and %0.5683, respectively. For the OC3
algorithm applied to MODIS, R is defined as max(Rrs(443,
488))/Rrs(547), with regression coefficients adjusted to rep-
resent the best fit between R and Chl.
[10] The algorithm details and their performance at global

and regional scales can be found in the published literature
as well as in online documents (http://oceancolor.gsfc.nasa.
gov/REPROCESSING/R2009/ocv6/).

3. Data Sources Used in This Study

[11] In situ data were obtained from the NASA SeaWiFS
Bio-optical Archive and Storage System (SeaBASS) archive,
which is a database of measurements collected by many
research groups in order to develop and validate satellite
ocean-color algorithms. The NOMAD data set, described by
Werdell and Bailey [2005], is a subset of SeaBASS specifi-
cally compiled for bio-optical algorithm development, as it
contains coincident measurements of Chl, Rrs(l), and other
data collected simultaneously in the global oceans.
[12] Like the current OC4 algorithm, the data set used to

develop the CIA was taken from NOMAD version 2, cov-
ering a period of 1991–2007 and containing 4459 data
records. Similar to Morel et al. [2007a], the NOMAD data
used in the present study for algorithm development are
those with Chl determined via high-performance liquid
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chromatography (HPLC) because (1) for most concentra-
tions, HPLC and fluorometric measurements agree well
[Werdell and Bailey, 2005, Figure 6]; (2) for low con-
centrations, Chl determined from fluorometric methods
often suffer from contaminations by chlorophyll b and
chlorophyll c, as demonstrated from data collected in the
Southern Ocean [Marrari et al., 2006; Dierssen, 2010]; and
(3) the focus of this work is on clear water with low con-
centrations, and the NOMAD data sets contain more HPLC
than fluorometric measurements for extremely clear waters
(Chl < 0.05 mg m!3). Furthermore, we applied the following
criteria to select data for the oligotrophic oceans: Rrs(l) >
0.0 sr!1, Chl > 0.0 mg m!3, bottom depth >30.0 m, and
latitude between 60°N and 60°S. A total of 136 data records
were obtained.
[13] To evaluate the algorithm performance when applied

to satellite data, in situ data were also obtained from the
SeaBASS archive through online query. The following cri-
teria were used to search for the in situ-satellite matching
pairs: bottom depth >30 m; solar zenith angle <70°; satellite
zenith angle <56°; time difference between satellite and in
situ measurements <3 h; satellite Chl variance (standard
deviation divided by mean) from the 3" 3 pixels centered at
the in situ stations <15%; difference between modeled and
measured surface irradiance <100%; wind speed <35 m s!1.
For SeaWiFS, a total of 1424 matching pairs were obtained
for 1998–2010. For MODIS/Aqua, a total of 330 matching
pairs were obtained for 2002–2010.
[14] The online query also resulted in the satellite Level-2

computer file names corresponding to the matching pairs.
These Level-2 data products were derived by the NASA
Ocean Biology Processing Group using the most recent
updates in algorithms and instrument calibration (Reproces-
sing 2010.0, SeaDAS6.1). The data products include ChlOC4,
aerosol optical thickness at 865 nm (t_865), and Rrs(l).
Rrs(l) data extracted from the Level-2 files were used as the
input to derive ChlCI (Chl from the CI algorithm) and com-
pared with those determined from the in situ measurements.

[15] To evaluate algorithm performance in constructing
time series, SeaWiFS Level-2 data between 1998 and 2010
covering two oligotrophic gyres, namely, in the Sargasso
Sea (15–35°N, 60–40°W) and in the eastern South Pacific
Gyre (20–40°S, 120–100°W), were obtained from the NASA
Goddard Space Flight Center. For cross-sensor consistency
evaluations, SeaWiFS and MODIS/Aqua Level-3 global
daily data for 2006 were used. Some Level-2 data files from
MODIS/Aqua, MERIS, and CZCS covering the western
North Atlantic Sea were also used for algorithm evaluation.

4. The New Empirical Chl Algorithm

[16] Similar to the MODIS CI derived from the Rayleigh-
corrected reflectance [Hu, 2011], the Rrs-based SeaWiFS CI
is defined as the relative height of Rrs(555) from a back-
ground, i.e., difference between Rrs(555) and a baseline
formed linearly between Rrs(443) and Rrs(670) (Figure 2):

CI ¼ Rrs 555ð Þ – Rrs 443ð Þ þ 555–443ð Þ= 670–443ð Þ* Rrs 670ð Þ – Rrs 443ð Þð Þ½ (;
which is equivalent to CI ≈ Rrs 555ð Þ – 0:5 Rrs 443ð Þ þ Rrs 670ð Þð Þ:

ð3Þ

[17] By this definition, for most clear ocean waters, CI is
negative. Because for most clear waters Rrs(670) is negligi-
ble (see the “clear water” concept described by Gordon and
Clark [1981] and revisited by Morel and Maritorena
[2001]), CI is basically a weighted relative difference
between Rrs(443) and Rrs(555). Just as a ratio between the
two is related to Chl, since Rrs(555) is relatively stable but
Rrs(443) is sensitive to Chl changes for clear waters [Gordon
and Morel, 1983], a difference between the two should also
be related to Chl, and this forms the basis of the new Chl
algorithm (the theoretical basis of this algorithm is provided
in section 6.1 below). Indeed, Figure 2 shows that with
increasing Chl, the magnitude of CI decreases monotoni-
cally. The added band at 670 nm has a great advantage in
compensating various errors in atmospheric correction and
other corrections when the algorithm is applied to satellite
data (see below).
[18] Using the NOMAD data set, the relationships

between band-ratio R and Chl (equation (2)) and between CI
and Chl are shown in Figures 3a and 3b, respectively, for
data collected from the 136 qualified stations. Also overlaid
on Figure 3a is the OC4v6 prediction (Figure 3a, solid line),
which shows that the globally optimized regression rela-
tionship fits well with the low Chl values. If a similar band-
ratio form is developed using the low-concentration stations
only (Figure 3a, green dots), slightly better performance can
be achieved as measured by the statistics (Table 1), but at the
price of sacrificing the intermediate values (Figure 3a, red
line) because the numerical fit tends to plateau for Chl
around 0.2 and 0.3 mg m!3.
[19] The statistical measure of the algorithm performance

is listed in Table 1. Note that when evaluating the relative
difference between the two data sets, x and y (in this case,
one is the in situ measurement (x) and the other is the
algorithm prediction (y)), RMS difference (or error) is typi-
cally evaluated using the form of (y – x)/x. However, when
one data set contains substantial errors, the (y – x)/x ratio
may be extremely large and therefore creates biased esti-
mates for the relative difference. For this reason, an unbiased

Figure 2. Illustration of the CI algorithm concept. When
Chl increases from 0.02 to 0.33 mg m!3, Rrs(443) decreases
while Rrs(555) and Rrs(670) remain relatively stable. Thus,
the distance from Rrs(555) to the linear baseline between
Rrs(443) and Rrs(670) (dotted line in the figure), defined as
the CI, is highly correlated with Chl. This is the same princi-
ple as using the Rrs(443)/Rrs(555) ratio to relate to Chl.
These in situ data are from the NOMAD data set.
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[22] Figure 3b also shows that the CIA may only be
applicable for low concentrations, because the relationship
quickly falls apart for CI > 0.0005 sr!1, corresponding to
ChlCI " 0.4 mg m!3. The reason why the CIA does not work
well above this concentration is demonstrated in sections 6.1
and 6.2 using radiative transfer modeling. Indeed, above this
concentration, the CIA tends to underestimate Chl signifi-
cantly (Figure 3b), where the original OC4v6 should be used
instead. For intermediate concentrations, a mixture between
the two algorithms may be used to assure image smoothness
when the algorithm switches from one to another. For such
practical considerations, the upper bound of 0.4 mg m!3 was
lowered to 0.3 mg m!3 (after trial and error with image and
histogram analyses to assure a smooth transition) so that
CIA works even at this upper bound. Thus, the new global
product of chlorophyll (ChlOCI) is defined as follows:

ChlOCI ¼ ChlCI for ChlCI ≤ 0:25 mg m!3
! "

ChlOC4 for ChlCI > 0:3 mg m!3
! "

a$ ChlOC4 þ b$ ChlCI for 0:25 < ChlCI ≤ 0:3 mg m!3
! "

;

ð5Þ

where a = (ChlCI – 0.25)/(0.3 ! 0.25) and b = (0.3 – ChlCI)/
(0.3 – 0.25). Because such derived Chl is from two algo-
rithms (OC4 and CIA), we use the term ChlOCI hereafter
to represent the merged product. Note that although the
algorithm blending for Chl between 0.25 and 0.3 mg m!3

might create some artifacts in image smoothness around the
lower and upper bounds (0.25 and 0.3), histogram analyses

of the entire Chl range from SeaWiFS data did not show
any noticeable artifacts in data continuity. On average,
SeaWiFS monthly data between 1998 and 2010 showed that
77.8 ( 1.0% of the global ocean had Chl ≤ 0.25 mg m!3

and 5.06 ( 0.43% of the global ocean had Chl between
0.25 and 0.3 mg m!3.

5. Validation of the New Chl Algorithm

[23] The CIA was implemented to derive ChlOCI from
SeaWiFS and MODIS/Aqua Level-2 Rrs(l) data where
concurrent in situ Chl were found (see data source). Because
the MODIS green band is centered at 547 nm instead of
555 nm for SeaWiFS, MODIS Rrs(547) was converted to
Rrs(555) by multiplying 0.93 according to data regression
from in situ measurements in the South Pacific (not shown).
Figure 4 shows the comparison between in situ Chl and
SeaWiFS ChlOCI and between in situ Chl and SeaWiFS
ChlOC4. Similarly, Figure 5 shows the comparison between
in situ Chl and MODIS/Aqua ChlOCI and between in situ
Chl and MODIS/Aqua ChlOC3. For high concentrations
(ChlOCI > 0.3 mg m!3), the data points between the two

Figure 4. Comparison between in situ Chl and satellite-
based Chl for SeaWiFS. The satellite Chl was derived from
both the OC4v6 algorithm (open circles) and Ocean Color
Index (OCI) algorithm (dots). Note that for Chl > 0.3 mg
m!3, the results from the two algorithms were forced to be
identical (equation (5)). The locations of the in situ measure-
ments for Chl ≤ 0.25 mg m!3 are shown in the correspond-
ing map. The comparison statistics for low concentration
(Chl ≤ 0.25) are listed in Table 2.

Figure 5. Comparison between in situ Chl and satellite-
based Chl for MODIS/Aqua. The satellite Chl was derived
from both the OC3 algorithm (open circles) and OCI algo-
rithm (dots). For algorithm consistency, MODIS Rrs(547)
was converted to Rrs(555) by Rrs(555) = 0.93 Rrs(547)
according to in situ data collected from the South Pacific
(not shown here). Note that for Chl > 0.3 mg m!3, the
results from the two algorithms were forced to be identical
(equation (5)). The locations of the in situ measurements
for Chl ≤ 0.25 mg m!3 are shown in the corresponding
map. The comparison statistics for low concentration (Chl ≤
0.25 mg m!3) are listed in Table 3.
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Standard OCx Band Ratio Algorithm 
better at mid to high chlorophyll 

New CI Line Height Algorithm 
better at low chlorophyll 

Proposed OCI Algorithm 
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